
OpenHealth – A Framework for the Delivery of CCR-based Services

__

1

OpenHealth

A Framework for the Delivery of CCR-based Services

October 24, 2006

OpenHealth – A Framework for the Delivery of CCR-based Services

__

2

OpenHealth – A Framework for the Delivery of CCR-based Services

__

3

TABLE OF CONTENTS
1. Introduction... 3

2. Goals and Strategies.. 4

2.1 Major Goals .. 4

2.2 Minor Goals .. 5

2.3 Design Strategies .. 5

3. Design Overview .. 6

3.1 Working Concepts and Terminology.. 6

3.1.1 CCR-enabled Client ... 6

3.1.2 OpenHealth Service ... 7

3.1.3 OpenHealth Service Definition (OHSD) ... 7

3.1.4 Registering OpenHealth Services (“Plug-In”) ... 8

3.1.5 Local OpenHealth Services.. 10

3.1.6 Remote OpenHealth Services (aka Web/H Services) 10

3.1.7 Hybrid OpenHealth Services ... 12

3.2 OpenHealth Service Interface Design... 13

3.2.1 Weak and Strong typing... 14

3.2.2 MIME Content Types .. 14

3.2.3 OpenHealth Service Definition.. 15

3.2.4 Categories .. 16

3.2.5 Mappings.. 18

3.2.6 OpenHealth Service Discovery.. 20

3.3 Specific Usages... 21

3.3.1 Additional Content or Interactive Scenarios.. 21

3.3.2 Service Chaining.. 23

5. Acknowledgements... 24

APPENDIX I – OpenHealth Service Definition – Schema.. 25

APPENDIX II – Remote OpenHealth Service – WSDL.. 34

1. Introduction

The AAFP’s Center for Health Information Technology site states that, “The ASTM

Continuity of Care Record standard (CCR
1
) was developed in response to the need to

organize and make transportable a set of basic information about a patient's health

care that is accessible to clinicians and patients.”
2

The purpose of this design is to leverage a variety of widely accepted protocols,

techniques and design principles, and couple them with the use of CCR as a lingua franca

to represent patient medical information, and create a practical, easy to use service

infrastructure.

1
 http://www.astm.org/cgi-

bin/SoftCart.exe/DATABASE.CART/WORKITEMS/WK4363.htm?L+mystore+oaob9148
2
 http://www.centerforhit.org/x201.xml

OpenHealth – A Framework for the Delivery of CCR-based Services

__

4

This design elevates CCR to becoming the lingua franca used in the delivery of patient-

centric services.

Provider-facing solutions and infrastructures (practice management systems, electronic

health record systems, and RHIOs) can benefit from a standardized approach to service

interoperability. By standardizing the mechanisms that support the exchange of

clinically-based content, this framework creates a unique opportunity for government and

medical associations to disseminate evidence-based, quality information to providers, in a

way that seamlessly and directly integrates to familiar tools. This level of standardization

greatly increases the benefits of federally funded efforts to affect quality of health care,

requiring little to no effort interpreting, implementing and integrating recommendations

into proprietary systems.

It is expected that the ubiquitous use of CCR and the availability of patient-centric CCR-

based services might act as an unprecedented agent of consumer empowerment, incenting

patients to take on a more active role in their overall health care management.

Finally, from a technical perspective, this design builds upon SOA
3
-enabling

technologies, protocols and best practices. Service Oriented Architectures encourage

agile software development by supporting the creation of composite applications based

on the use of loosely coupled and interoperable services. The discovery and use of SOA

services is typically the work of software architects, designers and engineers. The

OpenHealth Services (OHS) framework builds on SOA principles and enhances its

applicability by supporting the discovery and use of services by non-technical

individuals. OHS in effect commoditizes SOA, allowing health care providers and

patients direct access to web-enabled services.

2. Goals and Strategies

The overarching design principles for this service delivery framework are intended to

encourage and support early adoption, while enabling services to evolve into more

intricate and elaborate constructs, as the market dictates the need.

A careful balance of these requirements has lead to a design that reduces barrier to entry

(for instance, by minimizing complexity and cost of development, and by fostering the

reuse of existing solutions), while supporting flexibility and extensibility.

The design takes into account these considerations on behalf of service providers, client

solutions and human end-users.

2.1 Major Goals

Major goals focus on lowering barrier to adoption while supporting flexibility.

3
 http://en.wikipedia.org/wiki/Service-oriented_architecture

OpenHealth – A Framework for the Delivery of CCR-based Services

__

5

• Make it simple for users (providers and patients-alike) to use;

• Make it simple and inexpensive to create services;

• Make it simple and inexpensive to create service-aware clients;

• Create a system that has enough designed-in flexibility to support and even

promote experimentation, without being so flexible as to make interoperability a

challenge;

• Support a maximal number of user-agent configurations, transparently, including

support for web-hosted and web-enabled applications as well as potentially

disconnected PDA, cell phone and desktops;

• A user must be able to ‘try’ a new OpenHealth Service without ANY technical

computer knowledge beyond what can be expected of a typical consumer.

In terms of architectural quality attributes
4
, this framework has been designed with the

intent of supporting and fostering:

• Limited cost of implementation,

• Low complexity,

• Flexibility,

• Interoperability, and

• Usability.

2.2 Minor Goals

Minor goals of the framework design are intended to encourage the development of

business models that support the framework’s adoption by vendors and the use of

compliant tools by patients, providers, etc.

• Services should be combinable – so that an intelligent user-agent – for example –

can combine them to gain effects far greater than what one or two services could

provide individually (composite application
5
),

• Services should enable metering – to provide a profit motive for the provision of

services,

• Services should be capable of supporting anonymous use (if desired).

2.3 Design Strategies

• Leverage existing standards, in particular SOA-related standards and best

practices, such as:

o WS-I Basic Profile
6

o WSDL
7

o UDDI
8

4
 http://en.wikipedia.org/wiki/ISO_9126

5
 http://looselycoupled.com/glossary/composite%20application

6
 http://www.ws-i.org/

7
 http://www.w3.org/TR/wsdl

OpenHealth – A Framework for the Delivery of CCR-based Services

__

6

o SOAP
9

o WS-Security
10

o Orchestration (BPEL)
11

o etc

• The KISS
12

 principle,

• Define basic core functionality and decide which advanced features could be

layered on, as extensions
13

.

3. Design Overview

The OpenHealth Framework formalizes mechanisms that support the delivery of services

to CCR-enabled clients.

3.1 Working Concepts and Terminology

The OpenHealth Framework is described in terms of the following concepts (described

below):

• CCR-enabled Client

• OpenHealth Service

• OpenHealth Service Definition

• Registering OpenHealth Services

• Local OpenHealth Service

• Remote OpenHealth Service

• Hybrid OpenHealth Service

3.1.1 CCR-enabled Client

A CCR-enabled client will likely be a personal health record (PHR) software product or

an electronic medical record (EMR) that is capable of interpreting (importing) and

generating (exporting) a patient’s clinical history summary, using the ASTM CCR

standard.

Examples of CCR-enabled clients include desktop applications, web-hosted applications,

cell-phone applications, PDA applications, etc.

CCR-enabled clients may operate in a state that has access to the internet (aka connected)

or in a state that is not connected to the internet (aka disconnected).

The OpenHealth Services Framework is designed to work with all types of CCR-enabled

clients and it supports implementation of both connected and disconnected services.

8
 http://www.uddi.org/

9
 http://www.w3.org/TR/soap/

10
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

11
 http://en.wikipedia.org/wiki/Business_Process_Execution_Language

12
 http://en.wikipedia.org/wiki/KISS_Principle

13
 See Appendix I

OpenHealth – A Framework for the Delivery of CCR-based Services

__

7

CCR-enabled clients that are additionally capable of using OpenHealth Services are

known as OpenHealth Service Clients.

3.1.2 OpenHealth Service

An OpenHealth Service is, broadly speaking, a computerized system, designed to deliver

specific health-related functionality. Prototypically, service requests will take the form of

an input CCR, and outputs will likely be an HTML or PDF document.

Examples of potential OpenHealth Services include, but are not limited to:

• Patient health risk assessment,

• Getting quotes for HSA/HDHP (Health Savings Accounts/High-Deductible

Health Plan) products,

• Access to applicable clinical trials,

• Locating Medicare suppliers (contact information, maps and directions),

• Anonymous search for addiction counseling and support groups,

• Integrating wellness management with healthcare – exercising journals
14

,

• Merging and reconciling CCR documents obtained from different sources,

• Normalizing CCR coding,

• Translation into/from other file formats, e.g. X12-837, CCD and CDA,

• Locating specialists,

• “Generics” medication substitution, etc.

An OpenHealth Service can be Local, Remote or Hybrid (more on this later). Service

locality is transparent to the CCR-enabled client – though latency will be apparent to

remote system users.

Services can be logically associated with categories, creating a standardized taxonomy.

Examples of categories including perhaps ‘common forms’, ‘risk assessment and

decision support’, ‘anonymization services’, etc.

3.1.3 OpenHealth Service Definition (OHSD)

An OpenHealth Service Definition is a very simple XML-based format that (together

with this specification) defines all the details needed to access an OpenHealth service (be

it local or remote).

The structure and content of an OpenHealth Service Definition (OHSD) are detailed

later
15

 in this document. At a high level, an OHSD contains the name and description of

the service, authorship and copyright information, as well as the technical references for

invoking the service (URL, script(s), parameter definitions, etc).

14

 http://bimactive.com/ba/ui/land_main.php
15

 See section 3.2.3 Service Definition

OpenHealth – A Framework for the Delivery of CCR-based Services

__

8

A primary purpose of the OHSD is to support the commoditization of CCR-enabled

services. OHSD act as proxies for the services themselves, in a sense that non-technical

individuals can identify with. Users interact with OHSD as commodities that can be

downloaded, emailed, purchased and that can plug into familiar applications.

Intelligent user-agents will be capable of supporting the discovery, concatenation and use

of OpenHealth services by non-technical individuals, unfamiliar with SOA technologies.

Additionally OHSD supports the registration and use of OpenHealth Service clients in

connected and disconnected states, transparently. The OHSD has the capability of

supporting a service in such a way that some capability is enabled in disconnected state,

supporting graceful degradation of service.

It should be noted that OHSD files, while useful in the engagement of non-technical

users, are not required for programmatic use of the web services capabilities of the

framework. SOA developers can use OpenHealth web services utilizing conventional

techniques and technologies, such as UDDI.

All of the subsequent sections will refer to the use of OHSD in the registration and use of

OpenHealth services. If desired, the use of OHSD can be replaced with the URL
16

 of the

web service. Note, however, that this technique works for remote services but would not

work for local services.

3.1.4 Registering OpenHealth Services (“Plug-In”)

The OpenHealth Service framework enables the creation of a market where multiple

service providers can publish one or multiple OpenHealth Services. Published services

can be either implemented as local or remote and provided for free or in return for

payment.

When a user decides to use a service published by a particular provider, he/she will

download the desired OpenHealth Service Definition (OHSD) file. This file will be used

to register the service with the OpenHealth Service client (plug-in).

The specific manner in which service registration takes place is client-specific. In

desktop clients, double-clicking, dragging-and-dropping might be supported gestures of

the client application. Web-based clients (and also desktop) may support an interactive

presentation that allows the user to select the service (with or without direct user access

to OHSD file).

Additionally, it is also possible for OpenHealth Services to be automatically discovered

and registered on behalf of the user. In such cases, the client application can

communicate with service registries directly and apply appropriate rules to decide on

specific services to plug in. If the client application is provided by specific groups (such

16

 http://en.wikipedia.org/wiki/URL

OpenHealth – A Framework for the Delivery of CCR-based Services

__

9

as employers, insurers, providers, etc) it is likely that automated service registration will

keep users ‘up-to-date’ with service offerings derived as a benefit of their associations.

Besides the manner in which a user interacts with the service registration, storage of

OHSD registration information is also client-specific. Clients (desktop, web-hosted, cell

phone and PDA applications) are likely to implement a database of registered OHSD

which can later be accessed in support of service execution (as shown in sections 3.1.5

and 3.1.6).

In the picture above, the user has registered three services from three different service

providers. One of the registered services is local (AAFP’s CCR XSLT Report) and the

other two are remote.

When a service is registered with the client application, it is not only available for use (in

a manner that is integrated with the user’s environment) but the service is automatically

grouped with services of similar category(ies).

OpenHealth – A Framework for the Delivery of CCR-based Services

__

10

3.1.5 Local OpenHealth Services

A Local OpenHealth Service is one that runs in the client’s computer or device.

An example of this might be an XSLT script that accepts as input a CCR and generates

humanly-readable HTML. This could be used for instance in support of local generation

of pre-filled (with the individual’s data), standardized forms – e.g. Boy Scouts summer

camp health forms
17

. Another example might be a small diabetes management script

loaded on the user’s cell phone or PDA, that alerts the user that the keyed-in glucose

measurements are high and may require the patient to contact his/her doctor.

The picture above illustrates a user who registered OpenHealth services, as described in

section 3.1.4. The service, being local, includes enough executable information to run

locally on the client machine (desktop, cell phone, PDA, etc). When the user selects to

execute the service, the client application locates the service definition in its database of

registered services and reads the local execution information (script, XSLT transform,

etc). The local executable is run and the results are presented to the user.

3.1.6 Remote OpenHealth Services (aka Web/H Services)

A Remote OpenHealth Service is one that is accessed via a web connection, and runs on

a remote computer.

Remote OpenHealth Services require internet connectivity and rely on web service

standards
18

, tools and technologies.

17

 http://www.scouting.org/forms/34414.pdf
18

 http://www.w3.org/2002/ws/

OpenHealth – A Framework for the Delivery of CCR-based Services

__

11

Remote OpenHealth Services support an extensible interface, pseudo-coded as:

// Input parameters will typically include CCR-based content.

// Return results will typically be HTML or PDF.

// Additional parameters can be used for the exchange of

// account information.

public abstract DataElement[] Process(DataElement[] input);

public class DataElement

{

 public String name;

 public String type; // MIME type

 public String stringValue;

 public byte[] base64Value;

}

For instance, a service invocation that provides a CCR, in return for PDF content (e.g.

patient’s health risk assessment), would look something like:

// Service accepts patient’s CCR and generates (returns) PDF

// file with patient’s health risk assessment

DataElement inputCCR = new DataElement();

inputCCR.name = “PatientCCR”;

inputCCR.type = “application/x-ccr”;

inputCCR.stringValue = “<?xml version=‘1.0’ encoding=‘UTF-8’ ?>

<ContinuityOfCareRecord xmlns=‘urn:astm-org:CCR’> ...”;

DataElement inputParams[] = new DataElement[1];

inputParams[0] = inputCCR;

DataElement outputParams[] = service.Process (inputParams);

// The return will look something like...

// outputParams[0].type = “application/pdf”;

// outputParams[0].base64Value = “PDF file stream”;

OpenHealth – A Framework for the Delivery of CCR-based Services

__

12

The picture above illustrates a user who registered OpenHealth services, as described in

section 3.1.4. The service, being remote, includes WSDL information required to invoke

the web service. When the user selects to execute the service, the client application

locates the service definition in its database of registered services and reads WSDL URL.

The web service is invoked and the results are presented to the user.

3.1.7 Hybrid OpenHealth Services

A Hybrid OpenHealth Service is one that can be accessed both locally and via a web

connection, transparently.

Registration of a Hybrid OpenHealth service is done identically to the way it is for local

and remote services (hence transparently).

Once the service is installed, the client application can invoke the web service (if the

internet is available) or revert to local service execution. This supports graceful service

degradation in cases where the hosting device (e.g. cell phone, laptop, etc) may be out of

internet service coverage. Graceful degradation support includes the ability to support

data capture as well as minimizing functionality (e.g. reports, but no graphs, etc).

OpenHealth – A Framework for the Delivery of CCR-based Services

__

13

3.2 OpenHealth Service Interface Design

The OpenHealth Service interface design relies on a number of different standards and

techniques to create a framework that is initially flexible and overtime can evolve to more

rigid interface definitions, as the market requires:

• Weak typing,

• The generic software pattern, and

• Service introspection (OpenHealth Service Definition and MIME content types).

OpenHealth – A Framework for the Delivery of CCR-based Services

__

14

3.2.1 Weak and Strong typing

Strong typing is a very useful technique for encoding communications protocols where

the nature of the messages and protocols is well understood and largely immutable. Weak

typing is more flexible and promotes greater experimentation.

As interoperability among CCR-enabled systems mature, there will be a tendency

towards using strongly typed interfaces. Initially, a weak typed interface will support

easy adoption and implementation, via implementation of a parameterized solution.

The OpenHealth framework encourages initial use of weak typing, while still providing a

mechanism
19

by which we can evolve towards strong typing as pieces of the protocol

become better understood and agreed upon.

3.2.2 MIME Content Types20

MIME (Multipurpose Internet Mail Extensions) is an internet standard originally

designed to enable information other than text to be sent via email.

MIME use has extended well beyond its original intent (email) and in particular is the

technology that is used by web browsers to figure out the type of information they are

about to receive
21

.

19

 See section 3.2.4 Categories
20

 http://www.w3schools.com/media/media_mimeref.asp

OpenHealth – A Framework for the Delivery of CCR-based Services

__

15

The OpenHealth framework leverages MIME content types to specify the information

types that are exchanged by specific OpenHealth Services (local or remote). Services are

invoked using the polymorphic Process method. The types for input and output

parameters to the Process method are defined using MIME content types.

When a service is defined, the service’s OpenHealth Service Definition includes the

specific input and output MIME content types. Clients and servers can then rely on

traditional, standard MIME-enabled mechanisms to handle incoming and outgoing

content.

One can think of the OpenHealth Service interface as a generic (in the C++ template or

java-sense
22

) that can be specialized with specific parameterized (MIME) types. This

software pattern is recognized as being both type-safe and extensible.

The use of MIME content types in support of OpenHealth Services supports extending

service definitions both by using different, but standard application types and also by

defining additional, custom MIME types.

3.2.3 OpenHealth Service Definition

The OpenHealth Service Definition File (OHSD) will be used to define information

specific to a given OpenHealth Service.

The OHSD file contains a single header that describes the service and multiple (one or

more) mappings, which contain details on how to execute the service:

Header:

• Name

• Description

• Version Info (upgradeability)

• Author Info

• Categories
23

(zero or more)

• Digital Signature

Mappings
24

(one or more):

• Input Data Set

• Output Data Set

• Transformation Detail

21

 To see how Mozilla-based browsers handle MIME types:

http://developer.mozilla.org/en/docs/How_Mozilla_determines_MIME_Types; Internet Explorer:
http://msdn.microsoft.com/library/default.asp?url=/workshop/networking/moniker/overview/appendix_a.asp
22

 http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf and

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
23

 See detail in section 3.2.4 Categories
24

 See detail in section 3.2.5 Mappings

OpenHealth – A Framework for the Delivery of CCR-based Services

__

16

Specific details of header categories and mappings are covered in subsequent sections.

OpenHealth Service Definitions hide the complexity of service definition and locality of

service execution from non-technical users.

 3.2.4 Categories

An OHSD can have zero or more categories, which define the kind of service provided.

Service categories, when explicitly identified in the OpenHealth Service Definition file,

can be used in support of:

• Domain-specific usage, e.g. pre-natal care, AIDS, diabetes,

• Automated service classification, or

• As an extension mechanism that can be used to redirect usage of type-specific

WSDL.

Domain-specific usage allows for the easy (automated) organization of service instances

– by categories.

As an extension mechanism, categories allow subsets of services to evolve into more

specific informational exchanges (in other words, more specialized knowledge of

required content, etc – as a formal API). In this respect, OpenHealth categories would be

handled similarly to MIME Content types. Client applications implement MIME

support, on a type-specific manner. Initially, all OpenHealth categories will be

implemented similarly (i.e. invoking the Process method, as polymorphed in accordance

with the service definition). It is possible for category types to evolve, to support

category-specific WSDL definitions, with methods other than the Process method. Once

OpenHealth – A Framework for the Delivery of CCR-based Services

__

17

this evolution occurs, applications will know to handle the differentiated categories,

appropriately. This is a key example of how the OpenHealth Framework is designed to

support protocol evolution and extensibility.

Categories are an open enumeration, whereby new entries can be added, in support of the

framework’s extensibility.

As of this version of the specification, proposed categories include:

Enumeration Name Category Description
Expenses Expenses

TranslationService Translation Service Translation services will modify

the content and structure of the

input parameters to generate a new

document. Translation services

are useful for instance when

converting from CCR into CCD or

CDA or generating PDF/H from

CCR.

DeIdentificationService De-Identification Service It is often appropriate for clinical

information to be exchanged

without corresponding

identification information (e.g.

name, address, social security

number). In these cases, one can

use a de-identification service

which is aware of the input

document format (e.g. CCR) and

how/which information should be

de-identified. These services are

typically compounded with other

services (e.g. directory services for

counseling agencies/groups).

QueuingService Queuing Service Queues can be used in support of

asynchronous workflows. A

queuing service can return queuing

transaction ids that can be later

used in completion of the long-

term transaction.

Summary Summary A service that provides summary

reporting, e.g. list of providers,

immunization record, medical

history summary, etc.

Graph Graph A service that produces graphical

reports.

CommonForm Common Form A number of hospitals, insurers,

associations, etc have standard

forms that are routinely filled in

the delivery of care. Common

form services will produce pre-

filled forms (in HTML, PDF or

other format), using input clinical

information (CCR). Examples of

OpenHealth – A Framework for the Delivery of CCR-based Services

__

18

forms include hospital admission

forms, Boy Scouts of America

summer camp forms, etc.

ClinicalDirectivesAndRecommendations Medical Decision Support Decision support services are a

unique category of information

reporting, which is likely to evolve

into specialized category

processing.

ExplicitSubmitRequired ExplicitSubmitRequired Some services can require an

explicit SUBMIT button be

present. The purpose of this

category is to support services

whose execution is “expensive”

either in time or some other

resource. These services only get

invoked at the user’s explicit

request and not on-the-fly,

automatically by default.

Each category should be further documented in implementation guides that illustrate

unique usage, pertaining to each category.

3.2.5 Mappings

A mapping structure contains a list of input arguments to the service, and a list of output

result values. The service interface defines these arguments as weakly typed - that is to

say they are passed as untyped blobs of data, along with a MIME Content-Type to

specify how to interpret the blob.

In addition to the standard MIME Content-Types, this specification recognizes an

additional ‘well known’ MIME Content-Type:

MIME Content Type Description

application/x-ccr CCR document

Important other types that, it is expected, will typically be used as return values include:

• text/html,

• application/pdf
25

,

• application/x-url
26

, and

• image/png.

Please note that you can return ANY MIME content type from a service, and if a reader

for it is installed on the users’ computer, it should display properly. It is important to

note that this does not necessarily require any additional coding on the part of the

25

 It is unclear at the point this is being written whether PDF-H will use a different MIME content type. It

is unlikely, however.
26

 The application/x-url MIME type is used in support of scenarios that require additional content and/or

interaction with the user.

OpenHealth – A Framework for the Delivery of CCR-based Services

__

19

OpenHealth Service client application. It is common for most operating systems to

support registry services that map MIME content types to default applications. This is

most commonly seen when using a browser: when you target specific types, the registry

is used to locate registered viewers, which are then invoked by the browser. Similarly,

OpenHealth Service client applications can leverage local operating system support.

Compliant applications need not support ANY of these formats themselves.

Pragmatically – one can expect that most OpenHealth Services will accept ‘application/x-

ccr’ as input and produce ‘application/pdf’ or ‘text/html’ as output.

Mapping Transformation Detail

The mapping transformation detail includes information that is required to invoke the

execution of the OpenHealth service (local or remote).

The transformation detail can be either a LocalTransform or a RemoteTransform.

(Note that hybrid services contain both a local and remote transform.)

LocalTransform

A LocalTransform consists of a typed BLOB which is the actual executable

code/program that needs to be run to map inputs to outputs.

A LocalTransform contains an ‘Encoding’ attribute to indicate a standard MIME

encoding (such as base64), and an actual ‘Type’.

For now – the supported MIME Content Type include:

• application/x-xslt, for locally executable XSLT transformation scripts, and

• application/java-archive
27

, for locally executable java applications.

It is expected that in the future, the framework will support additional types such as

Crystal Reports, etc.

Example
<OpenHealthServiceDefinition …>

 <Header>

 …

 </Header>

 <Mappings>

 <Mapping>

 <Input>

 <DataDefinition>

 <Format>

 <Type>application/x-ccr</Type>

 </Format>

 </DataDefinition>

 </Input>

27

 In order to package a locally executable java application, package the required .class files into a jar file,

containing a manifest file that identifies the “main” class

(http://www.cs.princeton.edu/introcs/85application/jar/jar.html).

OpenHealth – A Framework for the Delivery of CCR-based Services

__

20

 <Output>

 <DataDefinition>

 <Format>

 <Type>text/html</Type>

 </Format>

 </DataDefinition>

 </Output>

 <TransformDetail>

 <LocalTransform Type=”application/xslt” Encoding=”base64”>

 PD9…

 </LocalTransform>

 </TransformDetail>

 </Mapping>

 </Mappings>

</OpenHealthServiceDefinition>

The contents of the <LocalTransform> would in this case be an XSLT script which maps

a document in CCR format to HTML. The XSLT can be created in any XSLT tool, and

then base64 encoded.

Note that some OHSD editing tools – like HealthFrame
28

– have built-in support for

encoding and packaging; alternatively, one can use uuencode.

RemoteTransform

A RemoteTransform consists of nothing more than a URL for the web service definition.

Note that you can access the WSDL used by that service by just using the url for

specified_URL?WSDL

For example, as of this writing one can use

http://www.recordsforliving.com/OpenHealthServices/Services/OpenHealthServicesSimp

leSampleServer/WebService.asmx?WSDL

3.2.6 OpenHealth Service Discovery

Remote (and hybrid) OpenHealth Services (web services) can be discovered using UDDI.

Using UDDI, two operations can be discovered: Process and GetServiceDefinition.

28

 HealthFrame is a personal health record software tool that supports the OpenHealth Service framework,

including being an OpenHealth Service Definition editor.

OpenHealth – A Framework for the Delivery of CCR-based Services

__

21

The Process operation is the polymorphic method that invokes the execution of the

OpenHealth Service. The invocation of the Process operation has been illustrated in

section 3.1.6.

The GetServiceDefinition gives access to additional information about the service, as

specified in the OpenHealth Service Definition. Once the system has access to the

OHSD, additional information not typically captured in UDDI can be accessed:

• Specific MIME types for polymorphic Process operation (input/output

parameters)

• Authorship

• Categorization (including support for OpenHealth Service evolution)

• Mappings (including possibly local transformations, for hybrid services).

3.3 Specific Usages

3.3.1 Additional Content or Interactive Scenarios

At times it is necessary for OpenHealth Services to prompt the user for additional

information not contained in the CCR. In some cases, this information is part of a

workflow that requires the user to provide preferences, account information/registration

or simply to interact with the service in a more direct way. In these cases, the web

service may need to return rich content, as for instance a web page with scripting.

In these cases, the service can return the application/x-url MIME content-type, containing

the URL of the redirected web page. Assuming, for instance, that the service is defined

to accept application/x-ccr as the input, the net effect is that the user’s CCR is sent to the

service, which in turn pre-populates the web page as appropriate, and returns the URL of

the pre-filled web page to be displayed by the client application.

This particular use is of great value to users who are often asked to enter the same health

information multiple times. Besides being annoying, this manual re-entry of data can lead

OpenHealth – A Framework for the Delivery of CCR-based Services

__

22

to data entry mistakes and oftentimes relies on the user’s memory. Using OpenHealth

Services, clinical information contained in the CCR will be automatically used to pre-fill

the web form, saving the user’s time and avoiding common mistakes.

<?xml version="1.0" encoding="UTF-8"?>

<OpenHealthServiceDefinition

xmlns="http://www.RecordsForLiving.com/Schemas/

2006-08/OpenHealthServiceDefinition/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Header>

 <ShortName>Simple (Remote) URL Sample</ShortName>

 <LongName>OpenHealth Services Simple (Remote) Sample of returning a

URL

</LongName>

 <VersionInfo>

 <FamilyGUID>ID-1B2595A5-CB80-4527-8CE3-

7828C548F202</FamilyGUID>

 <VersionNumber>20060905</VersionNumber>

 <VersionName>2006-09-05</VersionName>

 </VersionInfo>

 <AuthorInformation>

 <Copyright>Copyright 2006 Records For Living</Copyright>

 <FullName>Lewis G. Pringle of Records For Living</FullName>

 <Icon64x64 mimeType="image/gif">

 ...

 </Icon64x64>

 </AuthorInformation>

 <Categories>

 <Category>Report</Category>

 </Categories>

 </Header>

 <Mappings>

 <Mapping>

 <Input>

 <DataDefinition>

 <Format>

 <Type>application/x-ccr</Type>

 </Format>

 </DataDefinition>

 </Input>

 <Output>

 <DataDefinition>

 <Format>

 <Type>application/x-url</Type>

 </Format>

 </DataDefinition>

 </Output>

 <TransformDetail>

 <RemoteTransform>

 <URL>http://www.recordsforliving.com/

 OpenHealthServices/Services/

 OpenHealthServicesSimpleURLSampleServer/

 WebService.asmx

</URL>

 </RemoteTransform>

 </TransformDetail>

 </Mapping>

 </Mappings>

</OpenHealthServiceDefinition>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

23

3.3.2 Service Chaining

Service chaining enables the output of one service to be used as the input of another.

This is a pattern commonly used in UNIX systems (pipes) and allows for fairly complex

systems to be built using smaller, simpler components. In particular, service chaining

allows for the creation of reusable utility services such as user anonymity or dynamic

translation to/from CCR and HL7 CDA.

OpenHealth Services supports service chaining by defining WSDL input and output

parameters that are of the same type (i.e. DataElement[]).

The user experience is the net combined effect of applying each service in turn, as if it

were a single service. This transparent service composition allows for localized

customizations by the user (e.g. “turn on/off” of identity content).

Additionally, service functional composition allows for the quick deployment of different

flavors of services by merely combining existing utility services with new service

functionality. For instance, the service combination below re-uses the de-identification

utility service (which removes identifying information about the patient) and the CCR to

HL7 CDA mapping (XSLT). When these services are applied in combination with a

OpenHealth – A Framework for the Delivery of CCR-based Services

__

24

hypothetical HL7 CDA delegation service, it allows the user anonymous access to

services that were natively deployed for HL7 CDA:

Finally, it should be noted that service location independence allows for a mix and match

of local and remote services in a way that provide the best quality of service (for instance,

translation can be done locally, to minimize the exchange of multiple, potentially large

clinical records.

OpenHealth Service composition is not a replacement for WS-* orchestration and

collaboration mechanisms, which can be used to build composite applications.

OpenHealth Service composition provides a mechanism that can be user accessible – as

opposed to programmatic in nature.

5. Acknowledgements
This document was written by Records for Living (http://www.RecordsForLiving.com),

in collaboration with members of the AAFP’s Center for Health Information Technology

(http://www.centerforhit.org/).

We would like to acknowledge significant design and review contributions from CINA

(http://www.cina-us.com/), and MedCommons (http://www.medcommons.net).

OpenHealth – A Framework for the Delivery of CCR-based Services

__

25

APPENDIX I – OpenHealth Service Definition – Schema

High-level schema:

Header information:

OpenHealth – A Framework for the Delivery of CCR-based Services

__

26

Header/Categories and Header/Signatures information:

OpenHealthServiceDefinition/Mappings information:

OpenHealth – A Framework for the Delivery of CCR-based Services

__

27

DataDefinition:

OpenHealth – A Framework for the Delivery of CCR-based Services

__

28

Transform Detail:

OpenHealth – A Framework for the Delivery of CCR-based Services

__

29

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns="http://www.RecordsForLiving.com/Schemas/

2006-08/OpenHealthServiceDefinition/"

targetNamespace="http://www.RecordsForLiving.com/Schemas/

2006-08/OpenHealthServiceDefinition/"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:annotation>

 <xs:documentation>An OpenHealth Service Definition (OHSD) file contains

 information pertaining to a specific instance of an OpenHealth Service.

 Information contained in OHSD files include summary information about

 the service such as the service name, description, version, author info,

 and service categories. OHSD files can be digitally signed. OHSD files

 also contain type information for input and output service parameters,

 as well as optional transformation scripts.

 OpenHealth Service Definition files are part of the OpenHealth Service

 Framework.

 This schema specifies the format for all OHSD files.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType name="ImageType">

 <xs:annotation>

 <xs:documentation/>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="xs:base64Binary">

 <xs:attribute name="mimeType" type="xs:string"

 use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="FormatType">

 <xs:annotation>

 <xs:documentation>The format types are specified with MIME types

 (see http://www.iana.org/assignments/media-types/). Many types

 needed to support the exchange of health-related content, however,

 are not included in the standard set of MIME types. Some well-

 known types are listed below (in the Type field). Other future

 types might include ACCOUNT#, BILLING_INFORMATION, and other basic

 types that may be needed to augment CCR data in common transactions. Note that

 applications recieving data in a type not listed below may look up the argument type

 and how to display it in their computer's registry.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="Type" type="xs:string">

 <xs:annotation>

 <xs:documentation>Predefined (well known) values:

 application/x-ccr

 text/html

 application/pdf

 application/x-url

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="ElementEncoding" type="xs:string" minOccurs="0">

 <xs:annotation>

 <xs:documentation>Used in conjunction with DataElement, which contains both a

 StringValue and a base64Value fields. When sending a value through SOAP using

 the WSDL type DataElement - which field of the DataElement should be set? Set

 the StringValue or base64Value? Or - allow ANY. If not specified, assume it

 can be ANY.

 Predefined (well known) values:

 StringValue

OpenHealth – A Framework for the Delivery of CCR-based Services

__

30

 base64Value

 ANY (default value)

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="FileSuffix" type="xs:string" minOccurs="0">

 <xs:annotation>

 <xs:documentation>

 This file suffix field (like .x12-837) is used to register in

 the operating system an association between the

 given MIME Content-Type and this file suffix. Its optional,

 but helpful, if you wish to have a client application automatically

 recognize files of the given type (suffix)

 - for example - for a source for Translation Service - like X12-837.

 </xs:documentation>

 </xs:annotation>

 </xs:element> </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DataSet">

 <xs:annotation>

 <xs:documentation>Most OpenHealth services take a single input and

 produce a single output, but this abstraction allows for multiple inputs and

 multiple outputs. The point of this is - for example - to allow a service which

 merged two documents, or a service which produced both a printed report and a CCR

 as output.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="DataDefinition" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>There is almost always just one of these,but it could be

 omitted or occur multiple times.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Format" type="FormatType"/>

 <xs:element name="minOccurs" type="xs:int" default="1" minOccurs="0">

 <xs:annotation>

 <xs:documentation>if ommitted, this defaults to 1</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="maxOccurs" type="xs:int" default="1" minOccurs="0">

 <xs:annotation>

 <xs:documentation>if ommitted, this defaults to 1. If you specify a

 maxOccurs > 1, then arguments can either be distinguished by order, or by

 name</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="HeaderType">

 <xs:annotation>

 <xs:documentation>The Header contains descriptive and copyright information about

 this OpenHealth Service.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="ShortName">

 <xs:simpleType>

 <xs:annotation>

 <xs:documentation>Short name of the OpenHealth Service (roughly 100 characters

 or less)

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:maxLength value="100"/>

 </xs:restriction>

 </xs:simpleType>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

31

 </xs:element>

 <xs:element name="LongName" minOccurs="0">

 <xs:annotation>

 <xs:documentation>Long (or full) name of the OpenHealth Service. This can be up

 to (perhaps) 1000 characters. If this is empty - it is treated as the same as

 'ShortName'.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="Description" minOccurs="0">

 <xs:annotation>

 <xs:documentation>Detailed desciption of the OpenHealth Service.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="VersionInfo" minOccurs="0">

 <xs:annotation>

 <xs:documentation>This section documents information about the version of this

 OpenHealth Service. The FamilyGUID is used to maintain the identify of the

 service acros versions. The FamilyGUID should NOT change when the version

 number changes.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FamilyGUID" type="xs:ID">

 <xs:annotation>

 <xs:documentation>To fully identify a service use the

 VersionInfp/FamilyGUID (along with its version#).</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="VersionNumber" type="xs:nonNegativeInteger"/>

 <xs:element name="VersionName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="AuthorInformation" minOccurs="0">

 <xs:annotation>

 <xs:documentation/>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Copyright" type="xs:string" minOccurs="0"/>

 <xs:element name="OrganizationName" minOccurs="0"/>

 <xs:element name="FullName" minOccurs="0"/>

 <xs:element name="URL" minOccurs="0"/>

 <xs:element name="Icon64x64" type="ImageType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Categories" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Category" type="xs:string" minOccurs="0"

 maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>Specify type of OpenHealth Service, and any flags that

 might control how they are used and behave. For example, this can be set

 to Report, Expenses, Translation Service, De-Identification Service,

 Queueing Service, Summary, Graph, Common Form, Medical Decision Support,

 Explicit Submission Required, etc. See the OpenHealth SDK documentation

 for details on each of these. Also note that you can (and typically will)

 specify multiple Categories.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Signatures" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:annotation>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

32

 <xs:documentation>See http://www.w3.org/Signature/,

 http://www.xml.com/lpt/a/2001/08/08/xmldsig.html,or

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/

 html/underxmldigsig.asp for more details.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="Signature" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:any processContents="skip"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="LocalTransformDefinitionType">

 <xs:annotation>

 <xs:documentation>This is a definition of how to transform data locally - on this

 machine (direct report rather than service based).

 Examples of valid Type fields include 'http://www.w3.org/1999/XSL/Transform', for

 XSLT scripts. Examples of valid Encoding fields include 'base64' for base-64

 encoded strings.

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Type" type="xs:anyURI" use="required"/>

 <xs:attribute name="Encoding" type="xs:string" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="RemoteTransformDefinitionType">

 <xs:annotation>

 <xs:documentation>This type of transform is handled via a SOAP call (specify SOAP

 WSDL). From the user-point of view – there is no obvious difference between local

 and remote transforms (except possibly the requirement for particular software to

 be installed on the computer for local transforms and the requirement for network

 access for remote transforms). Note - RemoteTransformDefinitionType are what are

 usually referred to as 'services'.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="URL"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="OpenHealthServiceDefinition">

 <xs:annotation>

 <xs:documentation>An OpenHealth service is a definition of ALL the information

 needed to map an input document (for example a CCR) to an output document (e.g.

 another CCR, an HTML document, or a PDF). Note that these OpenHealth Services can

 run locally (more like a conventional report), or remotely (more like a

 conventional web service), transparently to the user.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Header" type="HeaderType"/>

 <xs:element name="Mappings">

 <xs:annotation>

 <xs:documentation>A collection of one or more mappings of inputs to outputs.

 These mappings can run locally, or via a remote service.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Mapping" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

33

 <xs:element name="Input" type="DataSet"> </xs:element>

 <xs:element name="Output" type="DataSet"> </xs:element>

 <xs:element name="TransformDetail">

 <xs:complexType>

 <xs:choice>

 <xs:element name="LocalTransform"

 type="LocalTransformDefinitionType"/>

 <xs:element name="RemoteTransform"

 type="RemoteTransformDefinitionType"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

34

APPENDIX II – Remote OpenHealth Service – WSDL

GetServiceDefinition:

OpenHealth – A Framework for the Delivery of CCR-based Services

__

35

Process:

OpenHealth – A Framework for the Delivery of CCR-based Services

__

36

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:tns="http://www.RecordsForLiving.com/Schemas/2006-08/OpenHealthServicesWSDL/"

 xmlns:s="http://www.w3.org/2001/XMLSchema"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:ohsd="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServiceDefinition/"

 targetNamespace="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServicesWSDL/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <wsdl:types>

 <s:schema elementFormDefault="qualified"

 targetNamespace="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServicesWSDL/">

 <s:complexType name="DataElement">

 <s:annotation>

 <s:documentation>This basic type is used as the building

 block for passing arguments to a service, and getting back

 results. This is a polymorphic type (dynamic type specified

 as a MIME Content-Type in the Type field). It is optional

 because it can often be infererd from the OHSD

 specification of this service.

 </s:documentation>

 </s:annotation>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="Name"

 type="s:string"/>

 <s:element minOccurs="0" maxOccurs="1" name="Type"

 type="s:string"/>

 <s:element minOccurs="0" maxOccurs="1" name="StringValue"

 type="s:string"/>

 <s:element minOccurs="0" maxOccurs="1" name="base64Value"

 type="s:base64Binary"/>

 </s:sequence>

 </s:complexType>

 <s:complexType name="ArrayOfDataElement">

 <s:annotation/>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="unbounded"

 name="DataElement" type="tns:DataElement"/>

 </s:sequence>

 </s:complexType>

 <s:element name="Process">

 <s:annotation>

 <s:documentation>Polymorphic array of elements for the

 process message request.</s:documentation>

 </s:annotation>

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="ARGS"

 type="tns:ArrayOfDataElement"/>

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:element name="ProcessResponse">

 <s:annotation>

 <s:documentation>Polymorphic array of elements for the

 process message response.</s:documentation>

 </s:annotation>

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1"

 name="ProcessResult" type="tns:ArrayOfDataElement"/>

 </s:sequence>

 </s:complexType>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

37

 </s:element>

 <s:element name="GetServiceDefinition">

 <s:annotation/>

 <s:complexType/>

 </s:element>

 <s:element name="GetServiceDefinitionResponse">

 <s:annotation>

 <s:documentation>Can return no result, but should be a

 result of type application/x-ohsd. </s:documentation>

 </s:annotation>

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1"

 ref="ohsd:OpenHealthServiceDefinition"/>

 </s:sequence>

 </s:complexType>

 </s:element>

 </s:schema>

 </wsdl:types>

 <wsdl:message name="GetServiceDefinitionSoapIn">

 <wsdl:part name="parameters" element="tns:GetServiceDefinition"/>

 </wsdl:message>

 <wsdl:message name="GetServiceDefinitionSoapOut">

 <wsdl:part name="parameters" element="tns:GetServiceDefinitionResponse"/>

 </wsdl:message>

 <wsdl:message name="ProcessSoapIn">

 <s:annotation>

 <s:documentation>This is the default style of SOAP message for

 remote service OpenHealth requests..</s:documentation>

 </s:annotation>

 <wsdl:part name="parameters" element="tns:Process"/>

 </wsdl:message>

 <wsdl:message name="ProcessSoapOut">

 <wsdl:part name="parameters" element="tns:ProcessResponse"/>

 </wsdl:message>

 <wsdl:portType name="OpenHealthServices_Basic_Soap">

 <wsdl:operation name="GetServiceDefinition">

 <wsdl:input message="tns:GetServiceDefinitionSoapIn"/>

 <wsdl:output message="tns:GetServiceDefinitionSoapOut"/>

 </wsdl:operation>

 <wsdl:operation name="Process">

 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 Returns an array of Clients.

 </wsdl:documentation>

 <wsdl:input message="tns:ProcessSoapIn"/>

 <wsdl:output message="tns:ProcessSoapOut"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="OpenHealthServices_Basic_Soap"

 type="tns:OpenHealthServices_Basic_Soap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetServiceDefinition">

 <soap:operation

 soapAction="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServicesWSDL/GetServiceDefinition"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Process">

 <soap:operation

 soapAction="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServicesWSDL/Process"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

OpenHealth – A Framework for the Delivery of CCR-based Services

__

38

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="OpenHealthServices_Basic_Soap12"

 type="tns:OpenHealthServices_Basic_Soap">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetServiceDefinition">

 <soap12:operation

 soapAction="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServicesWSDL/GetServiceDefinition"

 style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Process">

 <soap12:operation

 soapAction="http://www.RecordsForLiving.com/Schemas/

 2006-08/OpenHealthServicesWSDL/Process"

 style="document"/>

 <wsdl:input>

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

